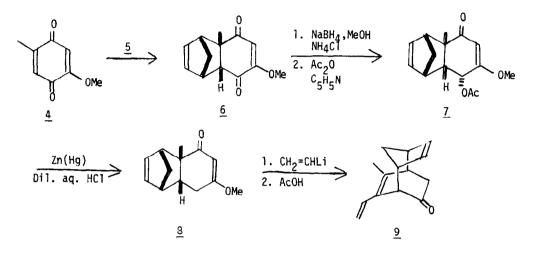

Tetrahedron Letters, Vol.26, No.48, pp 5955-5958, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

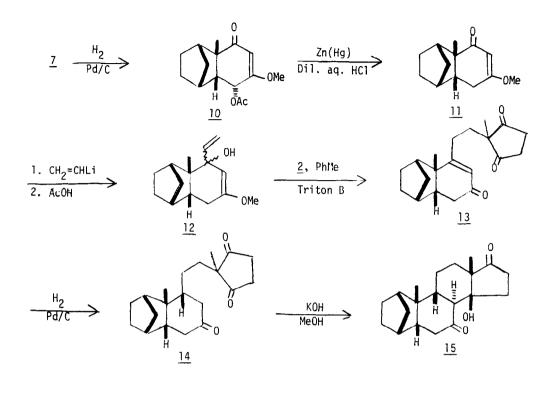
> BRIDGED RING A STEROIDS: TOTAL SYNTHESIS OF (±)-14β-HYDROXY-1β,4β-METHANO-5β,8α,9β-ANDROSTANE-7,17-DIONE Stephen P. Douglas, Jeffery F. Sawyer, and Peter Yates*[†] Lash Miller Chemical Laboratories, University of Toronto Toronto, Ontario, Canada M5S 1A1

Abstract: A modification of the Torgov steroid synthesis in which a vinyl methyl ether group in ring B stabilizes the critical cationic intermediate has been used to synthesize the title compound (15), whose structure has been confirmed by X-ray crystallographic analysis.


Earlier work from these Laboratories on the synthesis of carbon-bridged ring A and ring B steroids has involved transformations of natural or pre-formed steroids.¹ We report now on the total synthesis of a carbon-bridged ring A steroid by a newly modified version of the Torgov steroid synthesis.² The essence of the Torgov route is the generation of a cationic species <u>la</u> from the precursor 1 and the reaction of this with 2-methyl-1,3-cyclopentanedione (2). Although

it represents an elegant and rapid entry into the steroid series, particularly in some modified versions,³ it does not provide a convenient route from non-aromatic precursors to non-aromatic ring A steroids bearing a C-19 methyl group. Valenta and co-workers⁴ overcame this problem by the use of <u>3</u> as a precursor; however, such an approach cannot be readily adapted to the synthesis of bridged ring A steroids. It occurred to us that this obstacle might be overcome by generating an analogue of <u>1a</u> in which formation of the cationic species is facilitated by a vinyl methyl ether group in ring B rather than an anisyl group in ring A.

 $^{^{\}dagger}$ Dedicated with admiration, appreciation, and affection to Harry Wasserman on the occasion of his sixty-fifth birthday.


The Diels-Alder adduct <u>6</u>, prepared from the quinone <u>4</u> and cyclopentadiene (<u>5</u>),⁵ was chemoselectively reduced with $NaBH_4/NH_4C1/MeOH^6$ and the resulting keto alcohol was acetylated to give the keto acetate <u>7</u>,⁷ which on reduction with zinc amalgam gave the ketone <u>8</u>. This on treatment with vinyllithium followed by mild acidic work-up gave a product that is considered to have a structure of type <u>9</u>⁸ and to be formed by dehydration, rearrangement, and hydrolysis of the initially formed tertiary alcohol.

In order to reduce the proclivity for rearrangement the keto acetate $\underline{7}$ was chemoselectively hydrogenated to give $\underline{10}$ and this was then reduced with zinc amalgam to $\underline{11}$. Treatment of the las with vinyllithium followed by mild acidic work-up gave the tertiary alcohol $\underline{12}$. Reaction of thi with 2-methyl-1,3-cyclopentanedione ($\underline{2}$) under conditions similar to those used by Torgov,^{2,9} followed by hydrolysis gave the tricyclic intermediate $\underline{13}$. This on hydrogenation gave $\underline{14}$, which was converted to the bridged steroid $\underline{15}$ by treatment with base.^{10,11} The relative stereochemistry at C-9 in $\underline{14}$ and C-8, 13 and 14 in $\underline{15}$ was originally assigned on the basis of examination of molecular models. It has subsequently been confirmed by a single crystal X-ray analysis¹² of $\underline{15}$ (a stereographic plot is shown in Fig. 1).

This general type of approach to ring A bridged steroids has the potential of providing other stereoisomeric forms of such steroids. Furthermore, this new variant of the Torgov synthe sis holds the promise of providing a new route to unbridged non-aromatic steroids with a C-19 methyl group.

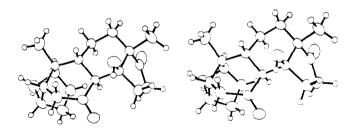


Figure 1

<u>Acknowledgement</u>. We thank the Natural Sciences and Engineering Research Council of Canada for support of this work.

References and Notes

- P. Yates and F.M. Walliser, <u>Can. J. Chem.</u>, 54, 3508 (1976); P. Yates and F.M. Winnik, <u>Can. J. Chem.</u>, 59, 1641 (1981); 63, 0000 (1985).
- S.N. Ananchenko and I.V. Torgov, <u>Dokl. Akad. Nauk SSSR</u>, **127**, 553 (1959); <u>Tetrahedron Lett.</u>, 1553 (1963); D.J. Crispin and J.S. Whitehurst, <u>Proc. Chem. Soc</u>., 22 (1963); T.B. Windholz, J.H. Fried, and A.A. Patchott, <u>J. Org. Chem.</u>, **28**, 1092 (1963).
- C.H. Kuo, D. Taub, and N.L. Wendler, <u>J. Org. Chem</u>., **33**, 3126 (1968); P. A. Magriotis and F. Johnson, <u>J. Org. Chem</u>., **49**, 1460 (1984).
- 4. A.R. Daniewski, P.S. White, and Z. Valenta, Can. J. Chem., 57, 1397 (1979).
- 5. G. Mehta, D.S. Reddy, and A.V. Reddy, <u>Tetrahedron Lett.</u>, 25, 2275 (1984).
- 6. G.W.K. Cavill and R.J. Quinn, Aust. J. Chem., 26, 595 (1973).
- 7. The relative stereochemistry at C-6 (steroid numbering) is assigned on the basis of ¹H nmr coupling of the proton at C-6 (dd, \underline{J} =10, 2 Hz) and confirmed by the ready closure of the corresponding alcohol to an iodo ether on treatment with $I_2/NaHCO_3$.
- 8. Ir λ_{max} (CHCl₃): 5.80 µm; ¹H nmr & (CDCl₃): 1.89 (s, 3H), ².1 (m, ²H), 2.4 3.8 (m, 6H), 4.91 (d, <u>J</u> = 11 Hz, 1H), 5.20 (d, <u>J</u> = 17.5 Hz, 1H), 5.3 - 5.6 (m, 2H), 5.60 (dd, <u>J</u> = 11, 17.5 Hz, 1H); ¹³C nmr & (CDCl₃): 18.8 (q), 38.1 (t), 39.4 (d), 40.2 (t), 44.3 (d), 48.3 (d), 51.6 (d), 111.5 (t), 128.4 (s), 129.4 (d), 131.1 (d), 132.2 (d), 138.7 (s), 212.9 (s).
- 9. Use of other conditions 3 did not give the desired product.
- 10. M.p. 210 212°C; ir λ_{max} (CHCl₃): 3.00, 5.76, 5.90 µm; ¹H nmr & (CDCl₃): 1.00 (s, 3H), 1.09 (s, 3H), 1.1 - 3.2 (m, 22H); ¹³C nmr & (CDCl₃): 19.7, 21.5, 24.8, 26.1, 30.1, 30.8, 31.3, 34.5, 39.2, 39.3, 41.8, 42.4, 43.8, 46.9, 47.0, 53.8, 55.0, 80.2, 216.7, 218.6.
- 11. The yield in each step is >85%, with the exception of the conversion of $\underline{12}$ to $\underline{13}$ where the yield was 26%; this can clearly be improved upon because $\underline{12}$ is accompanied by the corresponding dienol methyl ether.
- 12. Crystal Data: $C_{20}H_{28}O_3$, fw = 316.4, triclinic, space group <u>P</u> T, <u>a</u> = 7.408(2), <u>b</u> = 10.758(2), <u>c</u> = 11.687(2) Å, <u>a</u> = 66.02(1), <u>B</u> = 86.72(2), <u>y</u> = 74.85(2)^o, <u>U</u> = 820 Å³, $D_c = 1.28 \text{ gcm}^{-3}$ for Z = 2. Enraf-Nonius CAD4 diffractometer, Mo Ka radiation ($\lambda = 0.71069$ Å), h, ±k, ±l quadrants with 20 $\leq 55^{\circ}$, 4158 reflections. Structure soln. by direct methods, final R(wR) = 0.0408(0.0518) for 2800 observed (I>3\sigma(I)) reflections.

(Received in USA 9 July 1985)